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website https://zhuangdingyi.github.io/



3

Contents

1 Background

2 STZINB-GNN

3 Experiments

4 Conclusion



Origin-Destination (O-D) travel demand prediction which aims to predict the number of 
passengers’ travel demands from one region to another.

Important applications: intelligent transportation system, on-demand mobility service, 
public safety, and so on.
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Travel demand prediction

Region 1
(Home)

Region 2
(School)

O-D pair1: Home to School

O-D pair2: School to Home

O-D pairs

Time

O-D matrix



• Existing travel demand prediction use high-volume and low spatial-temporal 
resolution mobility service data, e.g. subway stations. The O-D matrices are dense.

• Ride-hailing or bike-sharing service has more granular resolutions. The O-D matrices 
are sparse.
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Sparsity in mobility service

Rail 
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Every 15min
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Bike sharing O-D matrix
(daily 10K in Chicago)



• Existing deep learning models for travel demand prediction target dense O-D matrices 
and apply Gaussian assumptions.

• A large number of zeros in sparse O-D matrices deviates from Gaussian distribution.

• We need discrete distributions like the negative binomial distribution but hope it can 
capture the zeros

6

Sparsity is a problem



• Sparsity is ubiquitous in prediction if the resolutions go up

• Zero demand is important in transportation management. It means no trips instead of 
missing data. We not only need to predict the non-zero entries, but also predict zeros.
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Sparsity is ubiquitous



Our main contributions include:

• We propose the STZINB-GNN to quantify the spatial-temporal uncertainty of O-D 
travel demand using a parameter 𝜋 to learn data sparsity

• The parameters of the probabilistic GNNs successfully quantify the sparse and 
discrete uncertainty, particularly in high-resolution data sets

• STZINB-GNN outperforms other models by using two real-world travel demand 
datasets with various spatial-temporal resolutions
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Contributions
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• Consider 𝑚 origins and 𝑢 destinations with travel demand in the window of length 𝑇 min.

• Consider all possible O-D pairs as node sets 𝑉, with 𝑉 = 𝑚×𝑢. Construct O-D graph 
𝒢 = 𝑉, 𝐸, 𝐴 with edge set 𝐸 and 𝐴 ∈ ℝ . ×|.| represent O-D pairs’ relationship.

• Denote 𝑋1 ∈ ℕ . ×3 the demand for all O-D pairs in the 𝑡-th time window.

• Our goal is to leverage historical records 𝑋5:1 as data inputs to predict the distribution of 
future 𝑋1:178 (𝑘 time windows ahead).
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Problem description



We use O-D pairs instead of regions as vertices 𝑉. The adjacency matrix should model spatial 
correlations of O-D pairs. Consider O-D pairs 𝑖 and 𝑗:

𝐴<,=> = ℎ𝑎𝑣𝑒𝑟𝑠𝑖𝑛𝑒	 𝑙𝑛𝑔<>, 𝑙𝑎𝑡<>, 𝑙𝑛𝑔=>, 𝑙𝑎𝑡=>
I5, ∀𝑖, 𝑗 ∈ 𝑉

𝐴<,=K = ℎ𝑎𝑣𝑒𝑟𝑠𝑖𝑛𝑒	 𝑙𝑛𝑔<K, 𝑙𝑎𝑡<K, 𝑙𝑛𝑔=K, 𝑙𝑎𝑡=K
I5, ∀𝑖, 𝑗 ∈ 𝑉

𝐴<,= =
1
2
( 𝐴<,=>

O + 𝐴<,=K
O)

�

The basic idea is to leverage the O-D pairs’ geographical adjacency. Future studies can assign 
different weights to the origins or destinations or even combine with demographic graphs.
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Adjacency matrix for O-D pairs



A random variable that follows NB distribution has a probability mass function:

𝑓TU 𝑥8; 𝑛, 𝑝 =
𝑥8 + 𝑛 − 1
𝑛 − 1

1 − 𝑝 Z[𝑝\

where 𝑛 and 𝑝 are the shape parameters that determine the number of successes and 
the probability of a single success. 

In ZINB distribution, a new parameter 𝜋 is introduced to learn the inflation of zeros.

𝑓]^TU 𝑥8; 𝑛, 𝑝, 𝜋 = _𝜋 + 1 − 𝜋 𝑓TU 0; 𝑛, 𝑝 , 𝑖𝑓	𝑥8 = 0
1 − 𝜋 𝑓TU 0; 𝑛, 𝑝 , 𝑖𝑓	𝑥8 > 0

It is either zeros with probability 	𝜋 or NB distribution with probability 1 − 𝜋.
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ZINB distribution



ZINB PDF
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NB and ZINB

NB PDF
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STZINB-GNN framework



Log likelihood of ZINB distribution:

𝐿𝐿c = _ log	𝜋 + log	 1 − 𝜋 𝑝\	, 𝑤ℎ𝑒𝑛	𝑦 = 0
log	1	 − 𝜋 + log	Γ 𝑛 + 𝑦 − log	Γ 𝑦 + 1 − log	Γ 𝑛 + 𝑛log	𝑝 + 𝑦log	 1 − 𝜋 ,𝑤ℎ𝑒𝑛	𝑦 > 0

where 𝜋, 𝑛, 𝑝 are also selected according to the index of 𝑦 = 0 or 𝑦 > 0. The final 
negative log likelihood loss is:

𝑁𝐿𝐿k3]^TU = −𝐿𝐿clm − 𝐿𝐿cnm
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STZINB-GNN probabilistic loss

Code available: https://github.com/ZhuangDingyi/STZINB
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Chicago Data Portal (CDP1)
• Trip pick-up and drop-off records of ride-sharing companies in the Chicago area
• The city of Chicago is divided into 77 zones (with 77×77 O-D pairs). Temporal 

resolution is fixed 15min. We vary the spatial resolutions.

Smart Location Database (SLD2)
• For-hire vehicle pick-up and drop-off trips in the Manhattan area
• The city is divided into 67 zones. We vary the temporal resolutions.

Both datasets use 4 months in total. 60%, 10%, and 30% of data are used for training, 
validation, and testing. 
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Dataset 

1. https://data.cityofchicago.org/Transportation/Transportation-Network-Providers-Trips/m6dm-c72p
2. https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
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Sparsity in datasets

Name Resolution # of O-D pairs Data size Zero rate

CDP_SAMP10 15 min 10×10 (100,11521) 81%

SLD_SAMP10 15 min 10×10 (100,11520) 54%

SLD_5min 5 min 67×67 (4489,34560) 88%

SLD_15min 15 min 67×67 (4489,11520) 70%

SLD_60min 60 min 67×67 (4489,2880) 60%

The zero rate increases from 50% to 88% as the temporal resolution for SLD 
dataset increases from 60 minutes to 5 minutes. 



Numeric estimation metrics:

• Mean absolute error: 𝑀𝐴𝐸 = 5
8|.|

∑ |𝑥< − 𝑥<s 	|
8|.|
<l5

• True zero rate: 
∑5tuvwx,tuwx

∑5,tuwx

• F1 score: yz{|<}<~\×z{|���	
yz{|<}<~\7z{|���

Probabilistic metrics:

• Mean prediction interval width1: MPIW = 5
8|.|

∑ |𝑈< − 𝐿<	|
8|.|
<l5

• KL-divergence: 5
8|.|

∑ (𝑥�<	log
Z�u7�
Zu7�

)8|.|
<l5
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Evaluation metric

1Khosravi, Abbas, et al. "Lower upper bound estimation method for construction of neural network-based prediction intervals." IEEE transactions 
on neural networks 22.3 (2010): 337-346.



• Historical average (HA)
• Spatial-Temporal Graph Convolution Networks (STGCN)
• Models with different probabilistic assumptions: 

– STNB-GNN
– STG-GNN
– STTN-GNN
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Baseline models
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Numerical comparison



• With finer resolutions, the STNB-GNN and STZINB-GNN models are more likely to 
accurately predict the average travel demand. 

• When the resolution decreases, like in the 60min case, all the deep learning models 
deliver similar performance. 

• 60min resolution is commonly used in the majority of the deep learning studies, but 
our results demonstrate the importance of discrete probabilistic assumptions when 
the temporal unit is shorter than 60 minutes
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Numerical comparison

SLD_15min SLD_60min



• We want our model to predict precisely, with smaller confidence intervals

• Model output distributions for future data points

• We want to quantify uncertainty in three resolution cases
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Uncertainty quantification



• STZINB-GNN leads to significantly 
smaller MPIW than the other models in 
the granular 5min resolution case. 

• Average travel demand in the SLD_5min 
case are mostly zeros. The sparsity 
parameter 𝜋 captures the zeros. 

• The STG-GNN and STTN-GNN are not 
able to capture the skewness of the data 
distribution, leading to large MPIWs.
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Uncertainty quantification

SLD_5min



SLD_15min
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Uncertainty quantification

SLD_15min and SLD_60min cases have larger average travel demand per 15 and 60 
minutes time interval. In these two cases, the STZINB-GNN has smaller MPIW only when 
the average travel demand is small. 

SLD_60min



• Sparsity parameters 𝜋 represent the inflow/outflow 
activity of the region

• Spatial locality exists, where communities are 
more likely to commute to their neighbors

• The variant temporal patterns are also obvious in 
AM and PM peaks
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Physical interpretation
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We introduce STZINB-GNN framework: 
– with a sparsity parameter 𝜋 for sparse travel demand prediction.
– embeds the spatial and temporal representation of distribution parameters for 

each spatial-temporal data point.
– outperforms the baseline models when the data are represented in high 

resolutions but performs worse when the resolution becomes coarser.
– has tighter prediction-intervals, compared to other baseline models
– has physical meanings, which could help transportation decision makers assign 

mobility services to zero or non-zero demand areas
– can be  extended to other prediction tasks that use highly sparse data points, 

such as anomaly detection and accident prediction
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Conclusions and takeaways



• Spatial-temporal kriging
• Deep hybrid choice model with urban road networks
• Autonomous vehicles and control (with Prof. Cathy Wu)
• Long-horizon demand prediction (virtual nodes or graph normalization techniques)
• Uncertainty quantification in deep learning

Other topics working on:
• Implementing RL based control on Chicago to relieve bus bunching
• Deep hybrid choice model + different unstructured data type
• Mobility pattern evolving before, during, and after COVID periods
• Computational fairness
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Potential cooperation



Thanks! Questions?
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