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Previous station similarity analysis is based on shallow mobility features, such as
aggregated passenger flow

National University
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Mohamed, K.et. al. in Clustering smart card data for urban mobility analysis.

Some transferred semantic models into urban computing, but regarding stations
as documents and lack of further comprehensive analysis

Wang, J., Kong, X., Rahim, A., Xia, F., Tolba, A., & Al-Makhadmeh, Z. (2017). IS2Fun:
ldentification of Subway Station Functions Using Massive Urban Data. IEEE Access, 5,
27103-27113.

Semantic models are now widely applied in fields outside Natural Language
Processing

Yuan, N. J., Zheng, Y., & Xie, X. (2018). Discovering Functional Zones in a City Using

Human Movements and Points of Interest. In Spatial Analysis and Location Modeling in
Urban and Regional Systems (pp. 33-62). Springer, Berlin, Heidelberg.
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Concept Case studies
Stations are like Chinese characters | Analysis on similarity between
or compound words MRT stations of Singapore in a

planning perspective:
Meaning in sentence

—

* 9 POl categories

5 case studies
Words

* Planning suggestions

Literal meaning,
—€.g. superman=super+man
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Dataset

Provided by Land Transport Authority (LTA), Singapore. Multi-model
data (Bus&MRT), we only considered MRT.

Table for dataset description

Description Value
Covered days 2012/3/19-2012/3/25 (Normal week)
Covered Stops 4702 (122 for MRT stations)
Average records number each day >5,000,000
Data volume 4.1 GB
Average multi-model riding distance 7 km
Average multi-model riding time 20 min
Multi-model transferring percentage 30%
Average MRT riding distance 12 km
Average MRT riding time 27 min
MRT transferring percentage 23%
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To better under stand temporal influence ,inspired by Mohamed, K.et.
al. in Clustering smart card data for urban mobility analysis. We
choose 1-3 hours as our time interval (LOW VARIABILITY).



Dataset
We divide the time into 7

time intervals: = s
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Boarding demand of different time intervals in 7 days

Mobility vectors of same time intervals: m*n dimension, where

m: 122*7= 854 (122 stations * 7 days)
n: 122+122+7= 251 ( inflow&outflow fromé&to all stations + one-

hot code for day)
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POI dataset is powered by Google Maps, contains:

e 22 categories
« 'atm','bank’,'bus_station', 'transit_station’, '‘place_of worship’
'supermarket’, 'shopping_mall’, 'education’ , 'parking', 'park’,
'political’, 'storage’, 'intsec','lodging’,'hospital’,'car_rental’,
'‘car_dealer','car_repair','bar','cafe’,'local_government_office','bic
ycle store’

e 10 MRT lines
« 'NS''EW''NE''CC' 'CE'BP'/ CG' PE' SW' SE
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Reduce the dimension of flow vectors from 251 into 16. Train 7 models
for 7 time intervals respectively. Train data use Min-Max normalization.

Semantic Q
feature

O
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Input Q Output
(251) Q Q T Q Q (251)
O O
O

256 128 64 16 64 128 256
(output — input) *
sampleSize

Loss =
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Stacked autoencoder

Platforms and training parameters:
* Epoch:200000, batch size: 128, optimizer: adaGradient (LR:0.01)
8 E5 cores, 16GB RAM, 1060 3GB, take 7hours to train one model

Loss for 7 time intervals

— Loss of pre-moming peak
Loss of morning peak
—— Loss of moming off-peak
— Loss of pre-evening peak o
0025 Loss of evening peak pre-morning peak 0.881
T Loesof evering oft peak.
morning peak 0.951
0020
morning off-peak 0.959
0.015
g pre-evening peak 0.882
oot0 evening peak 0.948
late evening peak 0.947
0.005
evening off-peak 0.865
0.000
Mean 0.919
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Country and Capital Vectors Projected by PCA
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Mobility semantics
For semantic vectors Beljing-China=Tokyo-Japan

l Cosine similarity

Stnl _Monday MorningPeak-Stnl Monday EveningPeak
tn2_Friday MorningPeak-Stn2 Frlday_EvenlngPeak

Encoded data similarity comparison

0.82 0.78 0.78

eeeeeeeee -peak | . 0.85

pre—morn'ing peak mornin'g peak morning'off—peakpre—even:ing peak evenin'g peak late eveﬁing peakeveningloﬁ—peak

Elements similarity of each two time interval group’s subtraction vector
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Term Frequency—-Inverse Document Frequency (TF-IDF)

. N
idf(t, D) = log {de D:ted}
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POI SVD Cluster: 0 with stations: 5 POI SVD Cluster: 1 with stations: 11 POI SVD Cluster: 3 with stations: 3
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lluster: 6 with stations: 11 POI SVD Cluster: 7 with stations: 44 POI SVD Cluster: 8 with stations: 5

Categories are hard
to classify, use topic
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Service semantics
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The results might change occasionally since samples are small
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POI clusters distribution

Cluster 11
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1. Different lines, same POI semantics, same flow semantics

Same flow features in different lines of Cluster 0

National University
of Singapore

TINUS
95

Same flow features in different lines of Cluster 1
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1. Different lines, same POI semantics, same flow semantics (dL_sP_sF).

Same flow features in different lines of Cluster 10

Same flow features in different lines of Cluster 9

Discovered stations are usually LRT or other remote stations,
because they same interaction station. Like Farmway and
Woodleigh (C10 emerging residential area), might both share
similar flow patterns from Sengkang.
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Case studies
2. Same line, same POI semantics, same flow semantics(sL_sP_sF)

Flow similarity for stations in the same line with same POI category
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This benefits best to advertisers. Discovered stations are usually the

adjacent stations in the same line, such as Somerset and Orchard or
Pioneer and Bonn Lay.
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Case studies
3. Same line, same POI semantics , different flow semantics (sL_sP_sF)

Pairs with difffernt flow features for stations in the same line with same POI category

—o— NS High
-o— EW
-0~ NE
-o— (C
-o—~ CE
-o— BP
-o- (G
-o— PE
-0~ SW
- 5 - Medium

Low

Remote stations in the same line, like Pasir Ris and Dover. While
stations in residential region like Jurong East and Buona Vista are
Intersections to connect flow demand from different places.
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Case studies
4. Same line, different POl semantics, same flow semantics (sL_dP_sF)

Flow similarity for stations in the same line with different POI categories

‘‘‘‘‘

\ ‘_,{\1
B = s N
Circle line and LRT lines are the most typical since they serve only

particular regions. POI are quite different in the opposite sides but
customer flow remains similar.




Case studies
5. Same line, different POl semantics, different flow semantics (sL_dP_dF)

Pairs with difffernt flow features for stations in the same line with different POI categories
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—o="NS High
-o— EW
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-o— CE
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-o- (G
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-0 SW
-o— SE - Medium

Low

This result satisfies our knowledge, since distant stations in the same
line serve different needs and located in various circumstances
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4. DISCUSSION AND ANALYSIS
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Advertisement. Advertisers can focuses on stations with

same POI& flow feature and avoid targeting stations with
different POI& flow feature. In general, advertising among
adjacent stations in the same line.

Site selection. For small and medium-size enterprises
targeting at reqular or similar customers, like cheap
clothing stores, snack bars or barber shops can refer to
stations with same flow features to develop core
customers.
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Urban planning

Infrastructure. Lanes, bus stops, etc. can be constructed
according to same flow features or same POI, like Tampines
and Jurong East (highest overlapping in sL_sP_sF).

F

Traffic monitoring. Crowd with similar boarding or
alighting patterns can provide insight to understand
customers mobility for emergent evacuation, especially for
circle line.

Land use. Flow and POI relationship, no matter similar or
not, could provide comprehension of urban land use. Low
utilized stations, like Ten Mile Junction, Farmway and
Woodleigh can be abolished for better land use.

\L -/
=

)




8B &
Further work NUS

POl category division. Our service semantics only gives a
roughly divided POI categories, but sophisticated division might

be further analyzed.

Bus stops consideration. We only focused on MRT stations,
which, however, is only part of the public transportation system.
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5. CONCLUSION
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Transplant semantic models on urban mobility discovery

Proposed a new comprehension of semantic model

Discovering specific relationship between MRT stations

Give solid urban planning analysis and suggestions
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